Dynamic energy budget modeling reveals the potential of future growth and calcification for the coccolithophore Emiliania huxleyi in an acifified ocean.

Dynamic energy budget modeling reveals the potential of future growth and calcification for the coccolithophore Emiliania huxleyi in an acifified ocean.

Year: 

2014
Authors: 
Muller, E.B.Nisbet, R. M.

Source: 

Global Change Biology

Abstract: 

Ocean acidification is likely to impact the calcification potential of marine organisms. In part due to the co-varying nature of the ocean carbonate system components, including pH and CO2 and CO32- levels, it remains largely unclear how each of these components may affect calcification rates quantitatively. We develop a process-based bioenergetic model that explains how several components of the ocean carbonate system collectively affect growth and calcification rates in Emiliania huxleyi, which plays a major role in marine primary production and biogeochemical carbon cycling. The model predicts that under the IPCC A2 emission scenario, its growth and calcification potential will have decreased by the end of the century, although those reductions are relatively modest. We anticipate that our model will be relevant for many other marine calcifying organisms, and that it can be used to improve our understanding of the impact of climate change on marine systems.

Volume: 

20

Pages: 

2031-2038

Publication Type: 

Journal Article

Research Areas: