Betaines and dimethylsulfoniopropionate as major osmolytes in Cnidaria with endosymbiotic dinoflagellates


Yancey, P. H.Heppenstall, M.Ly, S.Andrell, R. M.Gates, R. D.Carter, V.L.Hagedorn, M.


Physiological and Biochemical Zoology


Most marine invertebrates and algae are osmoconformers whose cells accumulate organic osmolytes that provide half or more of cellular osmotic pressure. These solutes are primarily free amino acids and glycine betaine in most invertebrates and small carbohydrates and dimethylsulfoniopropionate (DMSP) in many algae. Corals with endosymbiotic dinoflagellates (Symbiodinium spp.) have been reported to obtain from the symbionts potential organic osmolytes such as glycerol, amino acids, and DMSP. However, corals and their endosymbionts have not been fully analyzed for osmolytes. We quantified small carbohydrates, free amino acids, methylamines, and DMSP in tissues of the corals Fungia scutaria, Pocillopora damicornis, Pocillopora meandrina, Montipora capitata, Porites compressa, and Porites lobata (all with symbionts) plus Tubastrea aurea (asymbiotic) from Kaneohe Bay, Oahu (Hawaii). Glycine betaine, at 33-69 mmol/kg wet mass, was found to constitute 90% or more of the measured organic solutes in all except the Porites species. Those were dominated by proline betaine and dimethyltaurine. DMSP was found at 0.5-3 mmol/kg in all species with endosymbionts. Freshly isolated Symbiodinium from Fungia, P. damicornis, and P. compressa were also analyzed. DMSP and glycine betaine dominated in the first two; Porites endosymbionts had DMSP, proline betaine, and dimethyltaurine. In all specimens, glycerol and glucose were detected by high-performance liquid chromatography only at 0-1 mmol/kg wet mass. An enzymatic assay for glycerol plus glycerol 3-phosphate and dihydroxyacetone phosphate yielded 1-10 mmol/kg. Cassiopeia andromeda (upside-down jelly; Scyphozoan) and Aiptasia puchella (solitary anemone; Anthozoan) were also analyzed; both have endosymbiotic dinoflagellates. In both, glycine betaine, taurine, and DMSP were the dominant osmolytes. In summary, methylated osmolytes dominate in many Cnidaria; in those with algal symbionts, host and symbiont have similar methylated amino acids, as do congeners. However, little glycerol was present as an osmolyte and was probably metabolized before it could accumulate.







Publication Type: 

Journal Article

Research Areas: